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The nature of the dependence of the distr ibution function on the initial conditions and of the 
changes with t ime in its h igh- f requency  par t  a r e  c lar i f ied .  

In a number  of cases  it is important  to know how the par t i c le  distr ibution function f(t, r ,  v) r e l axes  
in the domain of l a rge  values of lvl. Let us say that if inelast ic  p r o c e s s e s  a re  poss ib le ,  thei r  influence on 
the mac roscop i c  gas  p a r a m e t e r s  will differ  depending on what f rac t ion  of the molecules  has an energy c o m -  
pa rab le  with the threshold  of a given sca t t e r ing  channel.  It is some t imes  a s s e r t e d  that this par t  of the func-  
t ion f changes m o r e  rapidly  than the r e s t .  Fo r  example ,  the evolution of the initial dis tr ibution 

[(0, r, v ) ~ : c e x p { - - b l v l 2 } h ( v ) ,  h ( v ) ~  { t, iv[ .<v o = const, (1) 
O, Iv[ > Vo 

of a gas  of e las t ic  sphe res  (more accura te ly ,  e las t ic  c i r c l e s  since the model is two-dimensional)  was con-  
s ide red  in [1]. On the bas i s  of computat ions p e r f o r m e d  using a calculat ing machine,  it is concluded that 
the domain Iv[ > v0 is filled (Maxwellized) during a t ime on the o rder  of the mean f ree  path t ime  r X. The 
value of such r e su l t s  is apparent ly  l imited since the behavior  of the function f is re la ted  to its asymptot ic  
in this case .  The asymptot ic  (in ]vl ) p rope r t i e s  of the dis t r ibut ion a r e  studied by sufficiently r igorous  me th -  
ods here in .  

Let  there  be a gas  whose pa r t i c l e s  in teract  by means  of a field with a Maxwell potential  of bounded 
radius  

q~ (Q j) { ~ r i~4 , ri~ .~ r o = const > O, (2) 

-~ O, rig > r o 

(rii is the spacing between the i - th  and j - th  pa r t i c l e s ,  i ~ j). Let us examine just such initial dis tr ibut ions 
whmh a re  r ep re sen t ab l e  as 

f(0,  r, v) ~ go (r, v) exp { -  b Ivl2 }, (3) 

where  [g0(r, v)[ < ~,  g0(r, v) is a continuous function, b = const > 0. Moreover ,  for  negligible s impl i f icat ions  
we a s s u m e  that the re  a r e  no ex te rna l  f ie lds  (see [2]). Such a gas is descr ibed  by the equation 

Df  ~ + v f = K (f'f' - -  ff) dmdv (4) 

(v, v a r e  the par t i c le  veloci t ies  p r i o r  to the col l is ion which r e su l t s  in the appearance  of the veloci t ies  v ' ,  
v ' ;  ~ -= f(t, r ,  v); f - f(t, r ,  v), f '  - f(t, r ,  v ' ) ,  f '  -= f(t, r ,  v ' ) ;  K - a l v - v l  s in3  is the kerne l  of the col l is ion 

ope ra to r ,  c~ = a ( P v - v l ,  3, (p) is the different ial  sca t t e r ing  c ro s s  sect ion at the angles 3, 9; dw - d3dr 
d * v ~ dvidv2dvs; v k ~ = 1, 2, 3) a r e  components  of the vec to r  v).  

Let us subst i tute the unknown function 

f(t ,  r, v ) ~ g ( t ,  r, v)exp {--b]v[ ~} (5) 
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and let us go f r o m  the Cauchy p rob lem (3)-(4) to its equivalent integral  equation (see [3], [4]) 
t 

g-[ .f [~ K~(gg--g?')dcodv ]t_ dv--[go]t=-B(g, go)=0,  (6) 
0 

Ko ~ K exp {-- b Ivl2}. 

The b r a c e s  [ ]s a re  he re  the t rans la t ion  opera to r  in the cha rac t e r i s t i c s  of the equation Dw = 0 ([3-5]). Let 
tE (0, tl) , t I < *% and let C denote the Banach space  of bounded continuous functions dependent on t, r ,  v(t~ (0, 
ti) , [r[ _< ~o [vl -< ~) with the norm of the e lement  

[~,x[[ = max Ixl, x E C. 
t r ,v  

By vi r tue  of Propos i t ion  (2), the inequality 

k =-- ~ Kedo)dv. ,Q oo, (7) 

is sa t i s f ied .  Hence,  the opera to r  B(u, x) t r a n s f o r m s  C x C into C; m o r e o v e r ,  it is continuous at any point 
(u, x)EC x C and has a continuous (Frechet) der iva t ive  there  equal to 

t 

B'.(u, x ) h ~ h  @ j' [SKe(uh-~-~ uh--u'h'--u'h')d(odv]~ ~ . ~ I,~._~d'~" (8) 
0 

The equation ' Bu(U , x)h = s ,  or  equivalently 

t 

h : t' 
0 

(9) 

is a lways solvable in C. Indeed, it is easy  to show that 

1[ L'%-- L'%[ I .~ l,dlz ~ -  z~[ l, Zl, Z 2 E C, 

In - -  (4llUll t l~ )  n , 
I 

n[ 

(lo) 

and hence for  sufficiently la rge  n 
ln~  1, 

i .e . ,  (9) has  a unique solution in C (see [6]. But the e lement  sEC is a rb i t r a ry ;  t he re fo re ,  the re  ex is t s  an 
? 

opera to r  (Bu(u , x)) - l .  Final ly ,  if x 0 - 3/exp{-filvl2},/3, ~/= const ,  fi -> 0, then 

B (x o, Xo)~:O. (11) 

The  l is ted p rope r t i e s  of the ope ra to r s  B(u, x) and Bu(U , x) a s su r e  validi ty of the t heo rem ([7]). 

THEOREM. T h e r e  exist  posi t ive numbers  60 and 6 such that ff []x-x01 [ -< 60, then (6) has  a unique 
solution in the neighborhood of ]lu-x011 -< 6. 

The numbers  60 and 6 a re  re la ted  to the quantity t I (the s m a l l e r  the tl, the g r e a t e r  they are) and to 
each other ,  namely  

8-~0. (12) 
6040 

T h e r e f o r e ,  the following can be a s s e r t e d .  

1. The re  exis ts  a t ime  in terva lwi th inwhich  the dis tr ibut ion function f(t, r ,  v) d e c r e a s e s  no more  slowly 
than the initial function c lvl ~ ~ as f(0, r ,  v).  The quantity t i depends on the p rope r t i e s  of the distr ibution 
f(0, r ,  v); if 60 is sufficiently smal l ,  the inequality t 1 >> ~'k is sa t i s f ied ,  which does not agree  with the deduc-  
t ions in [1]. 

2. The  re la t ion (12) shows that the solution of (6) depends continuously on go. 

3. Since (11) is sa t is f ied even for  T -< 0, the solution of (6) exis ts  even if the function go is s i g n - v a r i -  
able or  negat ive.  This  la t te r  p rope r ty  apparent ly  is of no grea t  value to the theory  of the c lass ica l  Bol tzmann 
equation but can turn out to be essent ia l  for  quantum theory  (which admits  of pas sage  to an integral  equation 
g rea t ly  analogous to (6), see  [8]) s ince the Wigner one-par t i c l e  function is not pos i t ive-def in i te .  
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